Średnia krocząca - MA ZMNIEJSZAJĄCA Średnia krocząca - MA Jako przykład SMA rozważ zabezpieczenie z następującymi cenami zamknięcia w ciągu 15 dni: Tydzień 1 (5 dni) 20, 22, 24, 25, 23 Tydzień 2 (5 dni) 26, 28, 26, 29, 27 Tydzień 3 (5 dni) 28, 30, 27, 29, 28 10-dniowa MA określiłaby ceny zamknięcia za pierwsze 10 dni jako pierwszy punkt danych. Następny punkt danych obniżyłby najwcześniejszą cenę, dodał cenę w dniu 11 i wziął średnią, i tak dalej, jak pokazano poniżej. Jak wspomniano wcześniej, IZ opóźnia bieżące działania cenowe, ponieważ są one oparte na wcześniejszych cenach, im dłuższy okres czasu dla MA, tym większe opóźnienie. Tak więc 200-dniowa MA będzie miała znacznie większy stopień opóźnienia niż 20-dniowy MA, ponieważ zawiera ceny z ostatnich 200 dni. Czas stosowania MA zależy od celów handlowych, a krótsze MA stosuje się w przypadku transakcji krótkoterminowych, a długoterminowe IZ są bardziej odpowiednie dla inwestorów długoterminowych. 200-dniowy MA jest szeroko śledzony przez inwestorów i handlowców, z przerwami powyżej i poniżej tej średniej ruchomej uważanej za ważny sygnał handlowy. IZ przekazują również ważne sygnały transakcyjne samodzielnie lub gdy przechodzą dwie średnie wartości. Wzrost wartości MA wskazuje, że zabezpieczenie ma tendencję wzrostową. podczas gdy malejący MA wskazuje na to, że ma tendencję zniżkową. Podobnie, pęd w górę jest potwierdzany przez zwyżkowy crossover. co ma miejsce, gdy krótkoterminowe MA przechodzi ponad długoterminowe MA. Pęd w dół jest potwierdzany przez niedźwiedzi crossover, który pojawia się, gdy krótkoterminowe MA przechodzi poniżej długoterminowego MA. Moving średnich i wykładniczych modeli wygładzania Jako pierwszy krok w wychodzeniu poza średnie modele, modele spacerów losowych i modele trendów liniowych, niesezonowe wzorce i trendy można ekstrapolować za pomocą modelu ruchomej średniej lub wygładzającej. Podstawowym założeniem modeli uśredniania i wygładzania jest to, że szeregi czasowe są lokalnie stacjonarne z wolno zmieniającą się średnią. W związku z tym bierzemy średnią ruchomą (lokalną), aby oszacować aktualną wartość średniej, a następnie wykorzystać ją jako prognozę na najbliższą przyszłość. Można to uznać za kompromis pomiędzy modelem średnim a modelem losowego chodzenia bez dryftu. Ta sama strategia może zostać wykorzystana do oszacowania i ekstrapolacji lokalnego trendu. Średnia ruchoma jest często nazywana wersją quotsmoothedquot oryginalnej serii, ponieważ krótkoterminowe uśrednianie ma wpływ na wygładzenie nierówności w oryginalnej serii. Dostosowując stopień wygładzenia (szerokość średniej ruchomej) możemy mieć nadzieję na uzyskanie optymalnej równowagi między wydajnością modeli średniej i losowej. Najprostszym rodzajem modelu uśredniającego jest. Prosta (równo ważona) Średnia ruchoma: Prognoza wartości Y w czasie t1, która jest dokonywana w czasie t, jest równa prostej średniej z ostatnich obserwacji: (Tu i gdzie indziej będę używał symbolu 8220Y-hat8221, aby stać dla prognozy szeregu czasowego Y dokonanego najwcześniej jak to możliwe wcześniej przez dany model.) Ta średnia jest wyśrodkowana w okresie t - (m1) 2, co oznacza, że oszacowanie średniej lokalnej będzie opóźniać się w stosunku do rzeczywistej wartości wartość średniej lokalnej o około (m1) 2 okresy. Tak więc, mówimy, że średni wiek danych w prostej średniej kroczącej wynosi (m1) 2 w stosunku do okresu, dla którego obliczana jest prognoza: jest to ilość czasu, o którą prognozy będą się opóźniać za punktami zwrotnymi w danych . Na przykład, jeśli uśrednisz 5 ostatnich wartości, prognozy będą o około 3 opóźnienia w odpowiedzi na punkty zwrotne. Zauważ, że jeśli m1, model prostej średniej ruchomej (SMA) jest równoważny modelowi chodzenia swobodnego (bez wzrostu). Jeśli m jest bardzo duże (porównywalne z długością okresu szacowania), model SMA jest równoważny modelowi średniemu. Podobnie jak w przypadku każdego parametru modelu prognostycznego, zwyczajowo koryguje się wartość k, aby uzyskać najlepsze dopasowanie do danych, tj. Średnio najmniejsze błędy prognozy. Oto przykład serii, która wydaje się wykazywać losowe fluktuacje wokół wolno zmieniającej się średniej. Po pierwsze, spróbujmy dopasować go do modelu losowego spaceru, który jest odpowiednikiem prostej średniej kroczącej z 1 słowa: model losowego spaceru bardzo szybko reaguje na zmiany w serii, ale czyniąc to, wybiera dużą część quota w tekście. dane (fluktuacje losowe), a także quotsignalquot (średnia miejscowa). Jeśli zamiast tego spróbujemy prostej średniej kroczącej z 5 terminów, otrzymamy gładszy zestaw prognoz: Pięciokrotna prosta średnia ruchoma daje znacznie mniejsze błędy niż model losowego spaceru w tym przypadku. Średni wiek danych w tej prognozie wynosi 3 ((51) 2), więc ma tendencję do pozostawania w tyle za punktami zwrotnymi o około trzy okresy. (Na przykład, pogorszenie koniunktury zdaje się mieć miejsce w okresie 21, ale prognozy nie zmieniają się aż do kilku kolejnych okresów.) Zwróć uwagę, że długoterminowe prognozy z modelu SMA są prostą poziomą, tak jak w przypadku losowego spaceru Model. Tak więc model SMA zakłada, że nie ma trendu w danych. Jednakże, podczas gdy prognozy z modelu losowego spaceru są po prostu równe ostatniej obserwowanej wartości, prognozy z modelu SMA są równe średniej ważonej ostatnich wartości. Limity ufności obliczone przez Statgraphics dla długoterminowych prognoz prostej średniej kroczącej nie stają się szersze wraz ze wzrostem horyzontu prognozy. To oczywiście nie jest poprawne Niestety, nie istnieje żadna podstawowa teoria statystyczna, która mówi nam, w jaki sposób przedziały ufności powinny poszerzyć się dla tego modelu. Jednak nie jest zbyt trudno obliczyć empiryczne szacunki limitów zaufania dla prognoz o dłuższym horyzoncie. Można na przykład skonfigurować arkusz kalkulacyjny, w którym model SMA byłby używany do prognozowania 2 kroków do przodu, 3 kroków do przodu itp. W próbie danych historycznych. Następnie można obliczyć standardowe odchylenia standardowe błędów w każdym horyzoncie prognozy, a następnie skonstruować przedziały ufności dla prognoz długoterminowych, dodając i odejmując wielokrotności odpowiedniego odchylenia standardowego. Jeśli spróbujemy 9-dniowej prostej średniej kroczącej, otrzymamy jeszcze bardziej wygładzone prognozy i większy efekt opóźniający: Średni wiek to teraz 5 okresów ((91) 2). Jeśli weźmiemy 19-dniową średnią ruchomą, średni wiek wzrośnie do 10: Należy zauważyć, że w rzeczywistości prognozy obecnie pozostają w tyle za punktami zwrotnymi o około 10 okresów. Jaka ilość wygładzania jest najlepsza dla tej serii Oto tabela, która porównuje ich statystyki błędów, w tym także średnią 3-dniową: Model C, 5-punktowa średnia ruchoma, daje najniższą wartość RMSE o niewielki margines w porównaniu z 3 - term i 9-term średnich, a ich inne statystyki są prawie identyczne. Tak więc, wśród modeli z bardzo podobnymi statystykami błędów, możemy wybrać, czy wolelibyśmy nieco większą reakcję, czy nieco większą płynność w prognozach. (Powrót do początku strony.) Browns Simple Exponential Smoothing (wykładniczo ważona średnia ruchoma) Opisany powyżej prosty model średniej ruchomej ma niepożądaną właściwość, że traktuje ostatnie k obserwacji równo i całkowicie ignoruje wszystkie poprzednie obserwacje. Intuicyjnie, przeszłe dane powinny być dyskontowane w bardziej stopniowy sposób - na przykład ostatnia obserwacja powinna mieć nieco większą wagę niż druga ostatnia, a druga ostatnia powinna mieć nieco większą wagę niż trzecia ostatnia; wkrótce. Wykonywany jest prosty model wygładzania wykładniczego (SES). Niech 945 oznacza stałą kwotową (liczbę od 0 do 1). Jednym ze sposobów napisania modelu jest zdefiniowanie serii L, która reprezentuje aktualny poziom (tj. Miejscową średnią wartość) serii oszacowanej na podstawie danych do chwili obecnej. Wartość L w czasie t jest obliczana rekurencyjnie z jego własnej poprzedniej wartości w następujący sposób: Zatem bieżącą wygładzoną wartością jest interpolacja między poprzednią wygładzoną wartością a bieżącą obserwacją, gdzie 945 kontroluje bliskość interpolowanej wartości do najnowszej. obserwacja. Prognoza na następny okres jest po prostu bieżącą wygładzoną wartością: Równoważnie, możemy wyrazić następną prognozę bezpośrednio w odniesieniu do wcześniejszych prognoz i poprzednich obserwacji, w dowolnej z następujących równoważnych wersji. W pierwszej wersji prognozą jest interpolacja między poprzednią prognozą i poprzednią obserwacją: w drugiej wersji następna prognoza jest uzyskiwana przez dostosowanie poprzedniej prognozy w kierunku poprzedniego błędu o wartość 945. jest błąd popełniony przy czas t. W trzeciej wersji prognozą jest ważona ruchoma średnia ważona wykładniczo (tj. Zdyskontowana) ze współczynnikiem dyskontowym 1- 945: Wersja interpolacyjna formuły prognostycznej jest najprostsza do zastosowania, jeśli wdraża się model w arkuszu kalkulacyjnym: pasuje on do pojedyncza komórka i zawiera odwołania do komórek wskazujące poprzednią prognozę, poprzednią obserwację i komórkę, w której przechowywana jest wartość 945. Należy zauważyć, że jeśli model 945 1, model SES jest równoważny modelowi chodzenia swobodnego (bez wzrostu). Jeśli 945 0, model SES jest równoważny modelowi średniemu, przy założeniu, że pierwsza wygładzona wartość jest równa średniej. (Powrót do początku strony.) Średni wiek danych w prognozie wygładzania prostego wykładniczego wynosi 1 945 w stosunku do okresu, dla którego obliczana jest prognoza. (To nie powinno być oczywiste, ale można je łatwo wykazać, oceniając nieskończoną serię.) Dlatego prosta prognoza średniej ruchomej ma tendencję do pozostawania w tyle za punktami zwrotnymi o około 1 945 okresów. Na przykład, gdy 945 0,5 opóźnienie wynosi 2 okresy, gdy 945 ± 0,2 opóźnienie wynosi 5 okresów, gdy 945 ± 0,1 opóźnienie wynosi 10 okresów, i tak dalej. Dla danego średniego wieku (to jest ilości opóźnienia), prosta prognoza wygładzania wykładniczego (SES) jest nieco lepsza od prognozy prostej średniej ruchomej (SMA), ponieważ umieszcza względnie większą wagę w najnowszej obserwacji - ie. jest nieco bardziej obojętny na zmiany zachodzące w niedawnej przeszłości. Na przykład model SMA z 9 terminami i model SES z 945 0.2 mają średnią wieku 5 lat dla danych w swoich prognozach, ale model SES przykłada większą wagę do ostatnich 3 wartości niż model SMA i do w tym samym czasie nie ma on całkowicie 8220forget8222 o wartościach większych niż 9 okresów, jak pokazano na tym wykresie: Kolejną ważną zaletą modelu SES w porównaniu z modelem SMA jest to, że model SES używa parametru wygładzania, który jest nieustannie zmienny, dzięki czemu można go łatwo zoptymalizować za pomocą algorytmu quotsolverquot, aby zminimalizować błąd średniokwadratowy. Optymalna wartość 945 w modelu SES dla tej serii okazuje się być 0,2961, jak pokazano tutaj: Średni wiek danych w tej prognozie wynosi 10,2961 3,4 okresów, co jest podobne do 6-okresowej prostej średniej kroczącej. Prognozy długoterminowe z modelu SES są prostą poziomą. jak w modelu SMA i modelu chodzenia bez wzrostu. Należy jednak zauważyć, że przedziały ufności obliczone przez Statgraphics teraz rozchodzą się w rozsądny sposób, i że są one znacznie węższe niż przedziały ufności dla modelu losowego spaceru. Model SES zakłada, że seria jest w pewnym stopniu przewidywalna, podobnie jak model losowego spaceru. Model SES jest w rzeczywistości szczególnym przypadkiem modelu ARIMA. więc teoria statystyczna modeli ARIMA zapewnia solidną podstawę do obliczania przedziałów ufności dla modelu SES. W szczególności model SES jest modelem ARIMA z jedną niesezonową różnicą, terminem MA (1) i nie ma stałego okresu. inaczej znany jako model DAIMA (0,1,1) bez stałej wartości. Współczynnik MA (1) w modelu ARIMA odpowiada ilości 1-945 w modelu SES. Na przykład, jeśli dopasujesz model ARIMA (0,1,1) bez stałej do analizowanej tutaj serii, szacowany współczynnik MA (1) okaże się równy 0,7029, czyli prawie dokładnie jeden minus 0,2961. Możliwe jest dodanie do modelu SES założenia niezerowego stałego trendu liniowego. Aby to zrobić, po prostu określ model ARIMA z jedną niesezonową różnicą i terminem MA (1) ze stałą, tj. Model ARIMA (0,1,1) ze stałą. Prognozy długoterminowe będą miały tendencję równą średniej tendencji obserwowanej w całym okresie szacowania. Nie można tego zrobić w połączeniu z korektą sezonową, ponieważ opcje korekty sezonowej są wyłączone, gdy typ modelu jest ustawiony na ARIMA. Można jednak dodać stały, długotrwały trend wykładniczy do prostego modelu wygładzania wykładniczego (z korektą sezonową lub bez niego) za pomocą opcji korekty inflacji w procedurze prognozowania. Odpowiednia stopa inflacji (procent wzrostu) na okres może być oszacowana jako współczynnik nachylenia w liniowym modelu trendu dopasowany do danych w połączeniu z logarytmem naturalnym, lub może być oparty na innych, niezależnych informacjach dotyczących długoterminowych perspektyw wzrostu . (Powrót do początku strony.) Browns Linear (tzn. Podwójnie) Exponential Smoothing Modele SMA i modele SES zakładają, że nie ma żadnego trendu w danych (co jest zwykle w porządku lub przynajmniej niezbyt dobre dla 1- prognozy wyprzedzające, gdy dane są stosunkowo hałaśliwe) i mogą być modyfikowane w celu włączenia stałego trendu liniowego, jak pokazano powyżej. A co z trendami krótkoterminowymi Jeśli w serii pojawiają się zmienne stopy wzrostu lub cykliczny wzór, który wyraźnie odróżnia się od hałasu, i jeśli istnieje potrzeba przewidywania z wyprzedzeniem dłuższym niż 1 okres, wówczas można również oszacować trend lokalny. problem. Prosty model wygładzania wykładniczego można uogólnić w celu uzyskania liniowego modelu wygładzania wykładniczego (LES), który oblicza lokalne oszacowania zarówno poziomu, jak i trendu. Najprostszym modelem trendu zmiennym w czasie jest liniowy model wygładzania wykładniczego Browns, który wykorzystuje dwie różne wygładzone serie, które są wyśrodkowane w różnych punktach czasowych. Formuła prognozowania opiera się na ekstrapolacji linii przez dwa ośrodki. (Bardziej wyrafinowana wersja tego modelu, Holt8217s, jest omówiona poniżej.) Algebraiczna postać liniowego modelu wygładzania wykładniczego Brown8217, podobnie jak model prostego wykładniczego wygładzania, może być wyrażana w wielu różnych, ale równoważnych formach. "Norma" w tym modelu jest zwykle wyrażana następująco: Niech S oznacza serie wygładzone pojedynczo, otrzymane przez zastosowanie prostego wygładzania wykładniczego dla szeregu Y. Oznacza to, że wartość S w okresie t jest określona przez: (Przypomnijmy, że w prostym wygładzanie wykładnicze, to byłaby prognoza dla Y w okresie t1.) Następnie pozwól oznaczać podwójnie wygładzoną serię uzyskaną przez zastosowanie prostego wygładzania wykładniczego (używając tego samego 945) do serii S: Na koniec, prognozy dla Y tk. dla każdego kgt1, jest podana przez: To daje e 1 0 (to jest trochę oszukiwać, i niech pierwsza prognoza równa się faktycznej pierwszej obserwacji), i e 2 Y 2 8211 Y 1. po którym prognozy są generowane za pomocą równania powyżej. Daje to takie same dopasowane wartości, jak formuła oparta na S i S, jeśli te ostatnie zostały uruchomione przy użyciu S 1 S 1 Y 1. Ta wersja modelu jest używana na następnej stronie ilustrującej połączenie wygładzania wykładniczego z korektą sezonową. Holt8217s Linear Exponential Smoothing Brown8217s Model LES oblicza lokalne oszacowania poziomu i trendu, wygładzając najnowsze dane, ale fakt, że robi to za pomocą pojedynczego parametru wygładzania, nakłada ograniczenia na wzorce danych, które może dopasować: poziom i trend nie mogą się różnić w niezależnych stawkach. Model LES Holt8217s rozwiązuje ten problem, włączając dwie stałe wygładzania, jedną dla poziomu i drugą dla trendu. W każdej chwili t, jak w modelu Brown8217s, istnieje oszacowanie Lt poziomu lokalnego i oszacowanie T t trendu lokalnego. Tutaj są one obliczane rekurencyjnie od wartości Y obserwowanej w czasie t oraz poprzednich oszacowań poziomu i trendu za pomocą dwóch równań, które oddzielnie stosują wygładzanie wykładnicze. Jeżeli szacowany poziom i tendencja w czasie t-1 to L t82091 i T t-1. odpowiednio, wówczas prognoza dla Y tshy, która zostałaby dokonana w czasie t-1, jest równa L t-1 T t-1. Gdy obserwowana jest wartość rzeczywista, zaktualizowana estymacja poziomu jest obliczana rekurencyjnie poprzez interpolację między Y tshy i jej prognozą L t-1 T t-1, przy użyciu wag o wartości 945 i 1-945. Zmiana szacowanego poziomu, mianowicie L t 8209 L t82091. można interpretować jako hałaśliwy pomiar trendu w czasie t. Zaktualizowane oszacowanie trendu jest następnie obliczane rekursywnie przez interpolację pomiędzy L t 8209 L t82091 a poprzednim oszacowaniem trendu, T t-1. używając ciężarów 946 i 1-946: Interpretacja stałej wygładzania trendu 946 jest analogiczna do stałej wygładzania poziomu 945. Modele o małych wartościach 946 przyjmują, że trend zmienia się bardzo powoli w czasie, natomiast modele z większe 946 zakłada, że zmienia się szybciej. Model z dużym 946 uważa, że odległe jutro jest bardzo niepewne, ponieważ błędy w oszacowaniu trendów stają się dość ważne przy prognozowaniu na więcej niż jeden okres. (Powrót do początku strony.) Stałe wygładzania 945 i 946 można oszacować w zwykły sposób, minimalizując średni błąd kwadratowy prognoz 1-krokowych. Po wykonaniu tej czynności w Statgraphics, szacunkowe wartości wynoszą 945 0,3048 i 946 0,008. Bardzo mała wartość wynosząca 946 oznacza, że model przyjmuje bardzo niewielką zmianę trendu z jednego okresu do drugiego, więc w zasadzie ten model próbuje oszacować długoterminowy trend. Analogicznie do pojęcia średniego wieku danych, które są używane do oszacowania lokalnego poziomu serii, średni wiek danych wykorzystywanych do oszacowania lokalnego trendu jest proporcjonalny do 1 946, chociaż nie jest dokładnie taki sam jak ten. . W tym przypadku okazuje się, że jest to 10.006 125. Nie jest to bardzo dokładna liczba, ponieważ dokładność oszacowania 946 wynosi 2182 tak naprawdę 3 miejsca po przecinku, ale jest tego samego ogólnego rzędu wielkości co wielkość próby 100, więc model ten uśrednia dość długą historię w szacowaniu trendu. Poniższy wykres prognozy pokazuje, że model LES szacuje nieco większy lokalny trend na końcu serii niż stały trend oszacowany w modelu SEStrend. Szacowana wartość 945 jest prawie identyczna z wartością uzyskaną przez dopasowanie modelu SES z trendem lub bez niego, więc jest to prawie ten sam model. Teraz, czy wyglądają one jak rozsądne prognozy dla modelu, który ma oszacować lokalny trend Jeśli wyobrazisz sobie 8220eyeball8221 ten wykres, wygląda na to, że lokalny trend spadł na końcu serii Co się stało Parametry tego modelu zostały oszacowane poprzez zminimalizowanie błędu kwadratów prognoz 1-krok naprzód, a nie prognoz długoterminowych, w którym to przypadku trend doesn8217t robi dużą różnicę. Jeśli wszystko, na co patrzysz, to błędy 1-etapowe, nie widzisz większego obrazu trendów w ciągu (powiedzmy) 10 lub 20 okresów. Aby uzyskać ten model lepiej dopasowany do ekstrapolacji danych przez gałkę oczną, możemy ręcznie dostosować stałą wygładzania trendu, aby wykorzystała krótszą linię podstawową do oszacowania trendu. Na przykład, jeśli zdecydujemy się ustawić 946 0,1, średnia wieku danych wykorzystywanych do oszacowania trendu lokalnego wynosi 10 okresów, co oznacza, że uśredniamy trend w ciągu ostatnich 20 okresów. W tym przypadku wygląda wykres prognozy, jeśli ustawimy 946 0,1, zachowując 945 0,3. Jest to intuicyjnie uzasadnione dla tej serii, chociaż prawdopodobnie ekstrapolowanie tego trendu prawdopodobnie nie będzie dłuższe niż 10 okresów w przyszłości. A co ze statystykami błędów? Oto porównanie modeli dla dwóch modeli pokazanych powyżej oraz trzech modeli SES. Optymalna wartość 945. Dla modelu SES wynosi około 0,3, ale podobne wyniki (z odpowiednio mniejszą lub większą reaktywnością) uzyskuje się przy 0,5 i 0,2. (A) Holts linear exp. wygładzanie z alfa 0,3048 i beta 0,008 (B) Holts linear exp. wygładzanie z alfa 0.3 i beta 0.1 (C) Proste wygładzanie wykładnicze z alfa 0,5 (D) Proste wygładzanie wykładnicze z alfa 0.3 (E) Proste wygładzanie wykładnicze z alfa 0.2 Ich statystyki są prawie identyczne, więc naprawdę nie możemy dokonać wyboru na podstawie błędów prognozy 1-krokowej w ramach próby danych. Musimy odwołać się do innych kwestii. Jeśli mocno wierzymy, że oparcie obecnego szacunku trendu na tym, co wydarzyło się w ciągu ostatnich 20 okresów, ma sens, możemy postawić argumenty za modelem LES z 945 0,3 i 946 0,1. Jeśli chcemy być agnostyczni w kwestii, czy istnieje lokalny trend, to jeden z modeli SES może być łatwiejszy do wyjaśnienia, a także dałby więcej prognoz w połowie drogi na następne 5 lub 10 okresów. (Powrót do początku strony.) Który rodzaj ekstrapolacji trendów jest najlepszy: poziomy lub liniowy Dowody empiryczne sugerują, że jeśli dane zostały już skorygowane (w razie potrzeby) o inflację, może być nieostrożnością ekstrapolować krótkoterminowe liniowe trendy bardzo daleko w przyszłość. Dzisiejsze trendy mogą się w przyszłości zanikać ze względu na różne przyczyny, takie jak starzenie się produktów, zwiększona konkurencja i cykliczne spadki lub wzrosty w branży. Z tego powodu proste wygładzanie wykładnicze często zapewnia lepszą pozapróbkę, niż można by się było tego spodziewać, pomimo cytowania ekwiwalentu trendów poziomych. Tłumione modyfikacje trendów liniowego modelu wygładzania wykładniczego są również często stosowane w praktyce, aby wprowadzić nutę konserwatyzmu do swoich projekcji trendów. Model LES z tłumioną tendencją może być zaimplementowany jako specjalny przypadek modelu ARIMA, w szczególności modelu ARIMA (1,1,2). Możliwe jest obliczenie przedziałów ufności wokół długoterminowych prognoz generowanych przez modele wygładzania wykładniczego, poprzez uznanie ich za szczególne przypadki modeli ARIMA. (Uwaga: nie wszystkie programy poprawnie obliczają przedziały ufności dla tych modeli). Szerokość przedziałów ufności zależy od (i) błędu RMS modelu, (ii) rodzaju wygładzania (prostego lub liniowego) (iii) wartości (s) stałej (ów) wygładzania (-ych) i (iv) liczbę okresów, które prognozujesz. Ogólnie rzecz biorąc, interwały rozkładają się szybciej, gdy 945 staje się większy w modelu SES i rozprzestrzeniają się znacznie szybciej, gdy stosuje się liniowe zamiast prostego wygładzania. Ten temat jest omówiony dalej w sekcji modeli ARIMA notatek. (Powrót do początku strony.) Średnie średnie kroczące: podstawy Z technicznego punktu widzenia technicy odkryli dwa problemy z prostą średnią kroczącą. Pierwszy problem leży w przedziale czasowym średniej ruchomej (MA). Większość analityków technicznych uważa, że działania cenowe. cena otwarcia lub zamknięcia akcji nie jest wystarczająca, na czym można polegać, jeśli chodzi o właściwe przewidywanie sygnałów kupna lub sprzedaży akcji crossoveru MA. Aby rozwiązać ten problem, analitycy przypisują teraz większą wagę najnowszym danym cenowym za pomocą wykładniczo wygładzonej średniej ruchomej (EMA). (Dowiedz się więcej w Eksplorowanie wykładniczo ważonej średniej ruchomej). Przykład Przykład Na przykład przy użyciu 10-dniowego MA, analityk podjąłby cenę zamknięcia 10 dnia i pomnożył tę liczbę przez 10, dziewiąty dzień po dziewiątej, ósmy dzień po ósmym i tak dalej do pierwszego z MA. Po ustaleniu całkowitej liczby analityk dzieli tę liczbę przez dodanie mnożników. Jeśli dodasz mnożniki 10-dniowego przykładu MA, liczba ta wynosi 55. Ten wskaźnik jest nazywany liniowo ważoną średnią ruchomą. (Aby zapoznać się z czytaniem, zobacz Proste średnie ruchome Wyróżnij trendy.) Wielu techników jest zdecydowanymi wyznawcami wykładniczo wygładzonej średniej kroczącej (EMA). Wskaźnik ten został wyjaśniony na wiele różnych sposobów, co dezorientuje zarówno studentów, jak i inwestorów. Być może najlepsze wyjaśnienie pochodzi z John J. Murphys Analiza techniczna rynków finansowych (opublikowanej przez New York Institute of Finance, 1999): Wykładniczo wygładzona średnia ruchoma rozwiązuje oba problemy związane z prostą średnią kroczącą. Po pierwsze wykładnicza średnia wygładzona przypisuje większą wagę nowszym danym. Dlatego jest to ważona średnia ruchoma. Ale podczas gdy przypisuje ona mniejszą wagę do danych dotyczących przeszłych cen, uwzględnia w swoich obliczeniach wszystkie dane z życia instrumentu. Ponadto użytkownik może dostosować wagę, aby nadać większą lub mniejszą wagę najnowszej cenie dni, która jest dodawana do wartości procentowej wartości z poprzednich dni. Suma obu wartości procentowych wynosi do 100. Na przykład cenę za ostatnie dni można przypisać wagę 10 (.10), która jest dodawana do wagi wcześniejszych dni wynoszącej 90 (.90). Daje to ostatni dzień 10 łącznej wagi. Byłoby to równowartość średniej z 20 dni, dając cenę z ostatnich dni mniejszą wartość 5 (.05). Rysunek 1: Średnia ruchoma wygładzona wykładniczo Powyższa tabela przedstawia indeks złożony Nasdaq z pierwszego tygodnia od sierpnia 2000 r. Do 1 czerwca 2001 r. Jak widać wyraźnie, EMA, która w tym przypadku wykorzystuje dane o cenie zamknięcia okres dziewięciu dni, ma określone sygnały sprzedaży na 8 września (oznaczone czarną strzałką w dół). Był to dzień, w którym indeks spadł poniżej poziomu 4000. Druga czarna strzałka pokazuje kolejną nogę, której technicy naprawdę oczekiwali. Nasdaq nie mógł wygenerować wystarczającej ilości i odsetek od inwestorów detalicznych, aby przełamać 3.000 punktów. Następnie spadł ponownie do poziomu 1619.58 w kwietniu 4. Trend wzrostowy z 12 kwietnia zaznaczono strzałką. Tutaj indeks zamknął się na poziomie 1 961,46, a technicy zaczęli postrzegać menedżerów funduszy instytucjonalnych, którzy zaczęli zdobywać okazje, takie jak Cisco, Microsoft i niektóre kwestie związane z energią. (Przeczytaj nasze artykuły pokrewne: Przenoszenie średnich kopert: Udoskonalanie popularnego narzędzia do handlu i Przenoszenie średniej bounce.) Typ struktury wynagrodzeń, którą zarządzający funduszami hedgingowymi zwykle stosują, w której części rekompensaty opiera się na wynikach. Ochrona przed utratą dochodu, która powstałaby w przypadku śmierci ubezpieczonego. Nazwany beneficjent otrzymuje. Miara związku między zmianą ilości żądanej danego towaru a zmianą jego ceny. Cena. Łączna wartość rynkowa w dolarach wszystkich dostępnych akcji spółki. Kapitalizacja rynkowa jest obliczana poprzez pomnożenie. Frexit krótko dla quotFrench exitquot to francuski spinoff terminu Brexit, który pojawił się, gdy Wielka Brytania głosowała. Zlecenie złożone z brokerem, który łączy w sobie funkcje zlecenia stopu z zleceniami limitów. Zlecenie stop-limit będzie.
No comments:
Post a Comment